Furuno#

[1]:
import xarray as xr
from open_radar_data import DATASETS

import xradar as xd

Download#

Fetching Furuno radar data file from open-radar-data repository.

[2]:
filename_scnx = DATASETS.fetch("2006_20220324_000000_000.scnx.gz")
filename_scn = DATASETS.fetch("0080_20210730_160000_01_02.scn.gz")
Downloading file '2006_20220324_000000_000.scnx.gz' from 'https://github.com/openradar/open-radar-data/raw/main/data/2006_20220324_000000_000.scnx.gz' to '/home/docs/.cache/open-radar-data'.
Downloading file '0080_20210730_160000_01_02.scn.gz' from 'https://github.com/openradar/open-radar-data/raw/main/data/0080_20210730_160000_01_02.scn.gz' to '/home/docs/.cache/open-radar-data'.

xr.open_dataset#

Making use of the xarray furuno backend.

scn format#

[3]:
ds = xr.open_dataset(filename_scn, engine="furuno")
display(ds)
<xarray.Dataset> Size: 55MB
Dimensions:            (azimuth: 1376, range: 602)
Coordinates:
    elevation          (azimuth) float64 11kB ...
  * range              (range) float32 2kB 25.0 75.0 ... 3.002e+04 3.008e+04
    time               (azimuth) datetime64[ns] 11kB ...
    longitude          float64 8B ...
    latitude           float64 8B ...
    altitude           float64 8B ...
  * azimuth            (azimuth) float64 11kB 0.21 0.47 0.74 ... 359.7 359.9
Data variables: (12/14)
    RATE               (azimuth, range) float64 7MB ...
    DBZH               (azimuth, range) float64 7MB ...
    VRADH              (azimuth, range) float64 7MB ...
    ZDR                (azimuth, range) float64 7MB ...
    KDP                (azimuth, range) float64 7MB ...
    PHIDP              (azimuth, range) float64 7MB ...
    ...                 ...
    QUAL               (azimuth, range) uint16 2MB ...
    sweep_mode         <U20 80B ...
    sweep_number       int64 8B ...
    prt_mode           <U7 28B ...
    follow_mode        <U7 28B ...
    sweep_fixed_angle  float64 8B ...

Plot Time vs. Azimuth#

[4]:
ds.azimuth.plot(y="time")
[4]:
[<matplotlib.lines.Line2D at 0x7f5c0cd30f10>]
../_images/notebooks_Furuno_8_1.png

Plot Range vs. Time#

We need to sort by time and specify the y-coordinate.

[5]:
ds.DBZH.sortby("time").plot(y="time")
[5]:
<matplotlib.collections.QuadMesh at 0x7f5c0982c350>
../_images/notebooks_Furuno_10_1.png

Plot Range vs. Azimuth#

[6]:
ds.DBZH.sortby("azimuth").plot(y="azimuth")
[6]:
<matplotlib.collections.QuadMesh at 0x7f5c016fc350>
../_images/notebooks_Furuno_12_1.png

scnx format#

[7]:
ds = xr.open_dataset(filename_scnx, engine="furuno")
display(ds)
<xarray.Dataset> Size: 45MB
Dimensions:            (azimuth: 722, range: 936)
Coordinates:
    elevation          (azimuth) float64 6kB ...
  * range              (range) float32 4kB 37.5 112.5 ... 7.009e+04 7.016e+04
    time               (azimuth) datetime64[ns] 6kB ...
    longitude          float64 8B ...
    latitude           float64 8B ...
    altitude           float64 8B ...
  * azimuth            (azimuth) float64 6kB 0.19 0.68 1.16 ... 359.2 359.7
Data variables: (12/14)
    RATE               (azimuth, range) float64 5MB ...
    DBZH               (azimuth, range) float64 5MB ...
    VRADH              (azimuth, range) float64 5MB ...
    ZDR                (azimuth, range) float64 5MB ...
    KDP                (azimuth, range) float64 5MB ...
    PHIDP              (azimuth, range) float64 5MB ...
    ...                 ...
    QUAL               (azimuth, range) uint16 1MB ...
    sweep_mode         <U20 80B ...
    sweep_number       int64 8B ...
    prt_mode           <U7 28B ...
    follow_mode        <U7 28B ...
    sweep_fixed_angle  float64 8B ...

Plot Time vs. Azimuth#

[8]:
ds.azimuth.plot(y="time")
[8]:
[<matplotlib.lines.Line2D at 0x7f5c0a86c290>]
../_images/notebooks_Furuno_16_1.png

Plot Range vs. Time#

We need to sort by time and specify the y-coordinate.

[9]:
ds.DBZH.sortby("time").plot(y="time")
[9]:
<matplotlib.collections.QuadMesh at 0x7f5c0069bb90>
../_images/notebooks_Furuno_18_1.png

Plot Range vs. Azimuth#

[10]:
ds.DBZH.sortby("azimuth").plot(y="azimuth")
[10]:
<matplotlib.collections.QuadMesh at 0x7f5c0a733cd0>
../_images/notebooks_Furuno_20_1.png

open_furuno_datatree#

Furuno scn/scnx files consist only of one sweep. But we might load and combine several sweeps into one DataTree.

[11]:
dtree = xd.io.open_furuno_datatree(filename_scn)
display(dtree)
<xarray.DatasetView> Size: 232B
Dimensions:              ()
Data variables:
    volume_number        int64 8B 0
    platform_type        <U5 20B 'fixed'
    instrument_type      <U5 20B 'radar'
    time_coverage_start  <U20 80B '2021-07-30T16:00:00Z'
    time_coverage_end    <U20 80B '2021-07-30T16:00:14Z'
    longitude            float64 8B 15.45
    altitude             float64 8B 407.9
    latitude             float64 8B 47.08
Attributes:
    Conventions:      None
    instrument_name:  None
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar

Plot Sweep Range vs. Time#

[12]:
dtree["sweep_0"].ds.DBZH.plot()
[12]:
<matplotlib.collections.QuadMesh at 0x7f5c0a683cd0>
../_images/notebooks_Furuno_24_1.png

Plot Sweep Range vs. Azimuth#

[13]:
dtree["sweep_0"].ds.DBZH.sortby("azimuth").plot(y="azimuth")
[13]:
<matplotlib.collections.QuadMesh at 0x7f5c0a5b18d0>
../_images/notebooks_Furuno_26_1.png