GAMIC#

[1]:
import xarray as xr
from open_radar_data import DATASETS

import xradar as xd

Download#

Fetching GAMIC radar data file from open-radar-data repository.

[2]:
filename = DATASETS.fetch("DWD-Vol-2_99999_20180601054047_00.h5")
Downloading file 'DWD-Vol-2_99999_20180601054047_00.h5' from 'https://github.com/openradar/open-radar-data/raw/main/data/DWD-Vol-2_99999_20180601054047_00.h5' to '/home/docs/.cache/open-radar-data'.

xr.open_dataset#

Making use of the xarray gamic backend. We also need to provide the group. Note, that we are using CfRadial2 group access pattern.

[3]:
ds = xr.open_dataset(filename, group="sweep_9", engine="gamic")
display(ds)
<xarray.Dataset> Size: 17MB
Dimensions:            (azimuth: 360, range: 1000)
Coordinates:
    elevation          (azimuth) float64 3kB ...
    time               (azimuth) datetime64[ns] 3kB ...
  * range              (range) float32 4kB 75.0 225.0 ... 1.498e+05 1.499e+05
    longitude          float64 8B ...
    latitude           float64 8B ...
    altitude           float64 8B ...
  * azimuth            (azimuth) float64 3kB 0.5109 1.519 2.519 ... 358.5 359.5
Data variables: (12/17)
    DBZH               (azimuth, range) float32 1MB ...
    DBZV               (azimuth, range) float32 1MB ...
    KDP                (azimuth, range) float32 1MB ...
    RHOHV              (azimuth, range) float32 1MB ...
    DBTH               (azimuth, range) float32 1MB ...
    DBTV               (azimuth, range) float32 1MB ...
    ...                 ...
    PHIDP              (azimuth, range) float32 1MB ...
    sweep_mode         <U20 80B ...
    sweep_number       int64 8B ...
    prt_mode           <U7 28B ...
    follow_mode        <U7 28B ...
    sweep_fixed_angle  float64 8B ...

Plot Time vs. Azimuth#

[4]:
ds.azimuth.plot()
[4]:
[<matplotlib.lines.Line2D at 0x7f622bfac4d0>]
../_images/notebooks_GAMIC_7_1.png

Plot Range vs. Time#

[5]:
ds.DBZH.plot()
[5]:
<matplotlib.collections.QuadMesh at 0x7f622c092590>
../_images/notebooks_GAMIC_9_1.png

Plot Range vs. Azimuth#

We need to sort by azimuth and specify the y-coordinate.

[6]:
ds.DBZH.sortby("azimuth").plot(y="azimuth")
[6]:
<matplotlib.collections.QuadMesh at 0x7f6223f6e710>
../_images/notebooks_GAMIC_11_1.png

backend_kwargs#

Beside first_dim there are several additional backend_kwargs for the odim backend, which handle different aspects of angle alignment. This comes into play, when azimuth and/or elevation arrays are not evenly spacend and other issues.

[7]:
help(xd.io.GamicBackendEntrypoint)
Help on class GamicBackendEntrypoint in module xradar.io.backends.gamic:

class GamicBackendEntrypoint(xarray.backends.common.BackendEntrypoint)
 |  Xarray BackendEntrypoint for GAMIC data.
 |
 |  Keyword Arguments
 |  -----------------
 |  first_dim : str
 |      Can be ``time`` or ``auto`` first dimension. If set to ``auto``,
 |      first dimension will be either ``azimuth`` or ``elevation`` depending on
 |      type of sweep. Defaults to ``auto``.
 |  reindex_angle : bool or dict
 |      Defaults to False, no reindexing. Given dict should contain the kwargs to
 |      reindex_angle. Only invoked if `decode_coord=True`.
 |  fix_second_angle : bool
 |      For PPI only. If True, fixes erroneous second angle data. Defaults to ``False``.
 |  site_coords : bool
 |      Attach radar site-coordinates to Dataset, defaults to ``True``.
 |  kwargs : dict
 |      Additional kwargs are fed to :py:func:`xarray.open_dataset`.
 |
 |  Method resolution order:
 |      GamicBackendEntrypoint
 |      xarray.backends.common.BackendEntrypoint
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  open_dataset(self, filename_or_obj, *, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables=None, use_cftime=None, decode_timedelta=None, format=None, group='sweep_0', invalid_netcdf=None, phony_dims='access', decode_vlen_strings=True, first_dim='auto', reindex_angle=False, fix_second_angle=False, site_coords=True)
 |      Backend open_dataset method used by Xarray in :py:func:`~xarray.open_dataset`.
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |
 |  __annotations__ = {}
 |
 |  description = 'Open GAMIC HDF5 (.h5, .hdf5, .mvol) using h5netcdf in X...
 |
 |  open_dataset_parameters = ('filename_or_obj', 'mask_and_scale', 'decod...
 |
 |  url = 'https://xradar.rtfd.io/en/latest/io.html#gamic-hdf5'
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from xarray.backends.common.BackendEntrypoint:
 |
 |  __repr__(self) -> 'str'
 |      Return repr(self).
 |
 |  guess_can_open(self, filename_or_obj: 'str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore') -> 'bool'
 |      Backend open_dataset method used by Xarray in :py:func:`~xarray.open_dataset`.
 |
 |  open_datatree(self, filename_or_obj: 'str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore', **kwargs: 'Any') -> 'DataTree'
 |      Backend open_datatree method used by Xarray in :py:func:`~xarray.open_datatree`.
 |
 |  open_groups_as_dict(self, filename_or_obj: 'str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore', **kwargs: 'Any') -> 'dict[str, Dataset]'
 |      Opens a dictionary mapping from group names to Datasets.
 |
 |      Called by :py:func:`~xarray.open_groups`.
 |      This function exists to provide a universal way to open all groups in a file,
 |      before applying any additional consistency checks or requirements necessary
 |      to create a `DataTree` object (typically done using :py:meth:`~xarray.DataTree.from_dict`).
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from xarray.backends.common.BackendEntrypoint:
 |
 |  __dict__
 |      dictionary for instance variables
 |
 |  __weakref__
 |      list of weak references to the object

[8]:
ds = xr.open_dataset(filename, group="sweep_9", engine="gamic", first_dim="time")
display(ds)
<xarray.Dataset> Size: 17MB
Dimensions:            (time: 360, range: 1000)
Coordinates:
    elevation          (time) float64 3kB ...
  * time               (time) datetime64[ns] 3kB 2018-06-01T05:43:40.504000 ....
  * range              (range) float32 4kB 75.0 225.0 ... 1.498e+05 1.499e+05
    longitude          float64 8B ...
    latitude           float64 8B ...
    altitude           float64 8B ...
    azimuth            (time) float64 3kB ...
Data variables: (12/17)
    DBZH               (time, range) float32 1MB ...
    DBZV               (time, range) float32 1MB ...
    KDP                (time, range) float32 1MB ...
    RHOHV              (time, range) float32 1MB ...
    DBTH               (time, range) float32 1MB ...
    DBTV               (time, range) float32 1MB ...
    ...                 ...
    PHIDP              (time, range) float32 1MB ...
    sweep_mode         <U20 80B ...
    sweep_number       int64 8B ...
    prt_mode           <U7 28B ...
    follow_mode        <U7 28B ...
    sweep_fixed_angle  float64 8B ...

open_odim_datatree#

The same works analoguous with the datatree loader. But additionally we can provide a sweep string, number or list.

[9]:
help(xd.io.open_gamic_datatree)
Help on function open_gamic_datatree in module xradar.io.backends.gamic:

open_gamic_datatree(filename_or_obj, **kwargs)
    Open GAMIC HDF5 dataset as :py:class:`datatree.DataTree`.

    Parameters
    ----------
    filename_or_obj : str, Path, file-like or DataStore
        Strings and Path objects are interpreted as a path to a local or remote
        radar file

    Keyword Arguments
    -----------------
    sweep : int, list of int, optional
        Sweep number(s) to extract, default to first sweep. If None, all sweeps are
        extracted into a list.
    first_dim : str
        Can be ``time`` or ``auto`` first dimension. If set to ``auto``,
        first dimension will be either ``azimuth`` or ``elevation`` depending on
        type of sweep. Defaults to ``auto``.
    reindex_angle : bool or dict
        Defaults to False, no reindexing. Given dict should contain the kwargs to
        reindex_angle. Only invoked if `decode_coord=True`.
    fix_second_angle : bool
        If True, fixes erroneous second angle data. Defaults to ``False``.
    site_coords : bool
        Attach radar site-coordinates to Dataset, defaults to ``True``.
    kwargs : dict
        Additional kwargs are fed to :py:func:`xarray.open_dataset`.

    Returns
    -------
    dtree: datatree.DataTree
        DataTree

[10]:
dtree = xd.io.open_gamic_datatree(filename, sweep=8)
display(dtree)
<xarray.DatasetView> Size: 232B
Dimensions:              ()
Data variables:
    volume_number        int64 8B 0
    platform_type        <U5 20B 'fixed'
    instrument_type      <U5 20B 'radar'
    time_coverage_start  <U20 80B '2018-06-01T05:43:08Z'
    time_coverage_end    <U20 80B '2018-06-01T05:43:38Z'
    longitude            float64 8B 6.457
    altitude             float64 8B 310.0
    latitude             float64 8B 50.93
Attributes:
    Conventions:      None
    instrument_name:  None
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar

Plot Sweep Range vs. Time#

[11]:
dtree["sweep_0"].ds.DBZH.sortby("time").plot(y="time")
[11]:
<matplotlib.collections.QuadMesh at 0x7f622d347cd0>
../_images/notebooks_GAMIC_19_1.png

Plot Sweep Range vs. Azimuth#

[12]:
dtree["sweep_0"].ds.DBZH.plot()
[12]:
<matplotlib.collections.QuadMesh at 0x7f6221b13150>
../_images/notebooks_GAMIC_21_1.png
[13]:
dtree = xd.io.open_gamic_datatree(filename, sweep="sweep_8")
display(dtree)
<xarray.DatasetView> Size: 232B
Dimensions:              ()
Data variables:
    volume_number        int64 8B 0
    platform_type        <U5 20B 'fixed'
    instrument_type      <U5 20B 'radar'
    time_coverage_start  <U20 80B '2018-06-01T05:43:08Z'
    time_coverage_end    <U20 80B '2018-06-01T05:43:38Z'
    longitude            float64 8B 6.457
    altitude             float64 8B 310.0
    latitude             float64 8B 50.93
Attributes:
    Conventions:      None
    instrument_name:  None
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar
[14]:
dtree = xd.io.open_gamic_datatree(filename, sweep=[0, 1, 8])
display(dtree)
<xarray.DatasetView> Size: 232B
Dimensions:              ()
Data variables:
    volume_number        int64 8B 0
    platform_type        <U5 20B 'fixed'
    instrument_type      <U5 20B 'radar'
    time_coverage_start  <U20 80B '2018-06-01T05:40:47Z'
    time_coverage_end    <U20 80B '2018-06-01T05:43:38Z'
    longitude            float64 8B 6.457
    altitude             float64 8B 310.0
    latitude             float64 8B 50.93
Attributes:
    Conventions:      None
    instrument_name:  None
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar
[15]:
dtree = xd.io.open_gamic_datatree(filename, sweep=["sweep_1", "sweep_2", "sweep_8"])
display(dtree)
<xarray.DatasetView> Size: 232B
Dimensions:              ()
Data variables:
    volume_number        int64 8B 0
    platform_type        <U5 20B 'fixed'
    instrument_type      <U5 20B 'radar'
    time_coverage_start  <U20 80B '2018-06-01T05:41:01Z'
    time_coverage_end    <U20 80B '2018-06-01T05:43:38Z'
    longitude            float64 8B 6.457
    altitude             float64 8B 310.0
    latitude             float64 8B 50.93
Attributes:
    Conventions:      None
    instrument_name:  None
    version:          None
    title:            None
    institution:      None
    references:       None
    source:           None
    history:          None
    comment:          im/exported using xradar